Author Topic: Initiative Math (aka opposed rolls)  (Read 702 times)

Offline SorO_Lost

  • Epic Member
  • ****
  • Posts: 7198
  • Banned
    • View Profile
Initiative Math (aka opposed rolls)
« on: November 26, 2018, 11:20:57 AM »
An Opposed Check's odds are a little different than a simple check against a set value.

Quote from: Kitsune's table, updated by Sunic_Flames with the help of DavidL
+0: 47.5% win, 5% tie, 47.5% loss.
+1: 52.5% win, 4.75% tie, 42.75% loss.
+2: 57.25% win, 4.5% tie, 38.25% loss.
+3: 61.75% win, 4.25% tie, 34% loss.
+4: 66% win, 4% tie, 30% loss.
+5: 70% win, 3.75% tie, 26.25% loss.
+6: 73.75% win, 3.5% tie, 22.75% loss.
+7: 77.25% win, 3.25% tie, 19.5% loss.
+8: 80.5% win, 3% tie, 16.5% loss.
+9: 83.5% win, 2.75% tie, 13.75% loss.
+10: 86.25% win, 2.5% tie, 11.25% loss.
+11: 88.75% win, 2.25% tie, 9% loss.
+12: 91% win, 2% tie, 7% loss.
+13: 93% win, 1.75% tie, 5.25% loss.
+14: 94.75% win, 1.5% tie, 3.75% loss.
+15: 96.25% win, 1.25% tie, 2.5% loss.
+16: 97.5% win, 1% tie, 1.5% loss.
+17: 98.5% win, 0.75% tie, 0.75% loss.
+18: 99.25% win, 0.5% tie, 0.25% loss.
+19: 99.75% win, 0.25% tie, 0.00% loss.
+20 or higher: 100% win, 0% tie, 0% loss.
*With Opposed Checks, if there is a tie in rolled values than the person with the higher bonus goes first. Skills also do not automatically fail, or succeed, on a naturally rolled value unlike Attacks & Saves. Original Source

As you can see there is a definitive diminishing returns effect. The greater your advantage is then the less each point gives you and the less the modifier tiebreaker matters. So to produce an at least 60/40 odds then you need a bonus of at least 3 higher than your target does. 70/30 needs +5, 80/20 needs +8, 90/10 needs +12, and a 100% success rate requires a +20 or greater advantage.
« Last Edit: November 26, 2018, 02:29:17 PM by SorO_Lost »